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tn previous papers we have described quantum mechanics as a matrix symptectic 
geometry and showed the existence of a braiding and Hopf algebra structure 
behind our lattice quantum phase space. The first aim of this work is to give the 
defining commutation relations of the quantum Weyl-Schwinger-Heisenberg 
group associated with our ~-matrix solution. The second aim is to describe the 
knot formalism at work behind the matrix quantum mechanics. In this context, 
the quantum mechanics of a particle-antiparticle system (pp) moving in the 
quantum phase space is viewed as a quantum double. 

1. INTRODUCTION 

In Djemai (1996) we studied the quantum mechanical symplectic geome- 
try. We showed that the noncommutative character of this geometry leads to 
a description of quantization in the Weyl-Schwinger procedure as a star 
deformation of the algebra of classical observables. 

Notice that the Schwinger basis may also be used in other contexts. For 
instance, this technique has been used in the study of the discrete torus 
membrane (Floratos, 1989a), in the construction of special representations 
of the GLq(2) quantum group (Floratos, 1989b), and in the Manin plane 
description of quantum mechanics (Floratos, 1990). The Z2-grading of the 
algebra 

[~/., "/m] = 2i sin[tx2(m, n)] "Ym+n 

and its fermionic counterpart 

{'Yn, ~m} = 2 cos[ct2(m, n)] ~m+. 
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have been also used in the N ---> ~ case as a supersymmetric example of 
Kac-Moody algebra (Fairlie et al., 1989). 

In other respects, the Fourier analysis, on the one hand, is the appropriate 
framework to describe the quantization and, on the other hand, leads naturally 
to Hopf algebras (Kirillov, 1976). 

In fact, there are many ways to approach Hopf algebras (Sweedler, 1969; 
Abe, 1980). Moreover, these new algebraic structures have given rise to 
the notion of quantum groups (Drinfel'd, 1986), and their relation to the 
Yang-Baxter equation (Yang, 1967; Baxter, 1972, 1982) and to the braid 
group (Birman, 1974) is well established (Alvarez-Gaum6 et al., 1989a,b; 
Sierra, 1989; Jimbo, 1989; Majid, 1990a; Kosmann-Schwarzbach, 1990). 

In general, a quantum group may be defined as a noncommutative and 
noncocommutative Hopf algebra. There are several approaches to quantum 
groups in the literature (Drinfel'd, 1986; Jimbo, 1985; Woronowicz, 1986, 
1987a,b; Manin, 1988; Faddeev et al., 1989). Another approach (Dubois- 
Violette and Launer, 1990) consists in introducing the quantum group, in 
analogy with the definition of classical groups, as a transformation group 
that preserves a nondegenerate bilinear form. 

Furthermore, knot theory (Rolfsen, 1976; Burde and Zieschang, 1986; 
Kauffman, 1987a, 1991; Lickorish, 1988; Birman, 1991; Bruschi, 1993) is 
also another way to approach quantum groups. Indeed, it is well known that 
the Jones polynomial (Jones, 1985) leads naturally to the notion of quantum 
groups and that quantum groups give rise to link invariants via solutions of the 
Yang-Baxter equation (Akutsu et al., 1989; Turaev, 1988; Kauffman, 1990a). 

In Djemai (1995) we studied the existence of a braiding behind the 
lattice quantum phase space introduced in Djemai (1996) and presented two 
different nontrivial solutions to the resulting Yang-Baxter equation. The first 
one is obtained by using the fact that the quantum group that preserves a 
nondegenerate bilinear form (in our case, it is our matrix symplectic structure 
D~b) is a Hopf algebra defined by a multiplicative matrix with an fit-matrix 
given by (Dubois-Violette and Launer, 1990) 

The second solution is extracted from the generalized composition law 
between the Schwinger matrices ~/m: 

3,m .~/n = exp[2ia2(n, m)] ,~n .~m : ~ ~ambn~a. ,~/b 
a.b 

where the commutation coefficients ~amb " are given by 

~amb n rn+n = 8a+b exp{i[~2(a,  b) - ~2(m, n)]} 
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obey the braid equation 

12~23~12 : ~23 ~12~23 

leading to the following ~t-matrix solution: 

In this case, the ~t-matrices are of (N 2 - 1) 2 X (N 2 - 1) 2 type. For 
instance, for N = 2, ~ is a 9 X 9 matrix (Djemai, 1995). 

The main aim of this work is twofold. First, we discuss the construction 
of the matrix quantum group corresponding to the above R-matrix. Second, 
we show that a quantum double D(H) (Drinfel'd, 1986), where H is a Hopf 
algebra, may give rise to a universal link invariant via a solution to the 
quantum Yang-Baxter equation. One application of this quantum double 
(QD) construction consists in considering the Hopf algebra H to be a matrix 
algebra MN(C) generated by Schwinger matrices "Ym, and the Hopf algebra 
H*, dual to H, to be the matrix algebra generated by the ~,m The continuous 
case is also considered. It enables us to describe the quantum mechanics 
(QM) of a pair pp as a QD. 

This work is organized as follows. In Section 2, we show how knot 
theory can lead naturally via the Kauffman bracket to the notion of quantum 
groups. In Section 3, we construct the quantum group associated with our 
R-matrix solution for N = 2 given in Djemai (1995). The results appear to 
be somewhat trivial, but we expect that this treatment will become more 
interesting from the case N = 3 forward. We also give the algebraic relations 
for N = 2 using a generalization of the classical notion of exponentiation in 
the context of the SUq(2) quantum group. In Section 4, we develop our Hopf 
algebra structure to construct a quantum double which reproduces a knot 
theory. In this context, we introduce a new diagrammatic notation which is 
more general than the Kauffman one (Kauffman, 1990a). The continuous 
case is also studied and some physical interpretations are proposed. Finally, 
Section 5 is devoted to concluding remarks. 

2. KNOT THEORY, YANG-BAXTER EQUATION, AND 
QUANTUM GROUPS 

The Reidemeister moves (Reidemeister, 1932) of types I, II, and III (see 
Fig. 1 ) can be performed on a link diagram. A link diagram is a locally four- 
valent plane graph with extra structure at the vertices in the form of crossings 
(see Fig. 2). 

A link is a collection of circles embedded in R s such that its projection 
onto a plane gives rise to a diagram for this link. A knot is a link with one 
component, i.e., a single circle embedded in R 3. 
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T y p e  I : 

Type I I : 

Type III : 

3( 

Fig. 1. The Reidemeister  moves.  

Two links are said to be ambient isotopic if there is a continuous time- 
parameter family of embeddings starting with one link and ending with the 
other one. The theory of knots and links is the theory of link embeddings 
under the equivalence relation of ambient isotopy. This theory is generated 
by the Reidemeister moves through the statement that two links (or knots) 
are ambient isotopic if  and only if their diagrams (planar projections) are 
related by a finite sequence of  Reidemeister moves. 

However, there is no constructive way to do this or even to establish if 
this can be done. 

If one restricts this equivalence relation to that generated by Reidemeister 
moves of types II and III only, the two links are said to be regularly isotopic. 
The example illustrated in Fig. 3 shows that opposite curls cancel. So, this 
(topological) property is suitable for the case of framed links. A framed link 
is a link such that each component has a continuous normal vector field. 
This leads us to think about embeddings of bands rather than circles. 

Figure 4 gives an example of a band which no longer has invariance 
under Reidemeister move type I. Although the bands illustrated in Fig. 5 are 
isotopic, their diagrams are not regularly isotopic, since their Whitney degrees 
(Whitney, 1937) are different (see Fig. 

- v a l e n t  v e r t e ×  

Fig. 2. Various crossings.  

6). A useful invariant of regular 
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-J,_..- 
Type II Type III 

Type II Type II Type II 

Fig. 3. Regular isotopy: opposite curls cancel, 

Fig. 4. Framed link: no invariance under the type 1 move. 

isotopy is the sum of the crossing signs, i.e., the so-called writhe w(K) of a 
link diagram K (see Fig. 7). 

Remarkable progress has been made by the introduction of link (or knot) 
invariants (Alexander, 1928), namely quantities that do not change while 
deforming the original diagram through the Reidemeister moves. But we do 
not have a complete set of these invariants, so link (or knot) invariants are 
not the definitive answer to this problem. 

Here we present a brief description of the bracket model (Kauffman, 
1987b, 1990a; Akutsu et al., 1989; Turaev, 1988) of the Jones polynomial 
(Jones, 1985) by associating a well-defined polynomial in three variables 
(K)(~ ,f,,~') to an unoriented link K. The polynomial (K) is completely deter- 
mined by the two formulas in Fig. 8. 

The first formula asserts that the polynomial for a given diagram is 
obtained as an additive combination of the polynomials for the diagrams 

.. ~ ~  . . i  

Fig. 5. Isotopic bands. 

Fig. 6. No regular isotopy for the link diagrams corresponding to the above bands 
(see Fig. 5). 
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C O l l , / e r l [  i o11 : 

Example : 

X 
Djemai 

Fig. 7. The sign convention of the writhe, and an example. 

,. < ) (> 

2. ( O > = ,X ; 
< 0 K > = d < E > , V I:: 

Fig. 8. Formulas 1 and 2 associating a polynomial to an unoriented link. 

obtained by splicing away the given crossing in two possible ways. The 
second formula indicates the value ' ~ '  of a loop if it occurs isolated inside 
a larger diagram. Then, the value of the polynomial acquires a factor~ "N from 
a disjoint union of N loops. 

As it stands, (K) is not an invariant of any of the Reidemeister moves. 
However, Fig. 9 shows a formula which is a simple consequence of  formulas 
1 and 2 in Fig. 8. This bracket is an invariant of the Reidemeister move of 
type II if and only if we c h o o s e / a n d , / s u c h  that 

_a2 _ -2 (1) 

It also follows directly that (K) is invariant under the move III (see Fig. 
10). Then, (K) is an invariant of  regular isotopy. 

Ng. 9. The polynomial corresponding to the type II move. 
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-- c < ~ > + < .------ 

--- O. < ~ " ~ . ~  ' ~  ) + ,.,z-1 < 

= ( ~ > "  

Fig. 10. The invariance corresponding to the type 111 move. 

To obtain an invariant of ambient isotopy for oriented links, one uses 

fK( , , )  = ( - a  (2.) 

where K is oriented, w(K) is the writhe of  K, and (K) is the bracket evaluated 
on the unoriented link underlying K. The factor ( - a  3) comes from the evalua- 
tion of the bracket of the move I (see Fig. 11). 

Then, to any oriented link K, one can associate the following Jones 
polynomial (Kauffman, 1987b): 

VK(t) = f r ( t  -1/4) (3) 

Now, we will show how the Kauffman bracket polynomials can be seen 
as a vacuum-vacuum amplitude in a combinatorial version of a topological 
quantum field theory (Witten, 1989). 

U 

3 = - c~ < >. 

Fig. 11. The factor (-a 3) coming from the polynomial of the type 1 move, 



2036 Djemai 

) 

29  

Fig. 12. A link diagram in the 1 + 1 space-time. Maxima, minima, and crossings. 

Let us regard the projection plane as 1 + 1 space-time and position the 
link diagram so that it is transversal to the space levels except at the critical 
points corresponding to maxima, minima, and crossings (see Fig. 12). 

Each minimum can be regarded as a creation of  two particles from the 
vacuum, each maximum as an annihilation, and each crossing as an interac- 
tion. To each of these events one can associate a matrix whose indices go 
over (say) the spins of the particles and whose values are the amplitudes for 
each of these events (see Fig. 13). These amplitudes are calculated according 
to the principles of quantum mechanics (Feynman, 1964): 

(a) If an event is decomposable into a set of steps (creations, annihila- 
tions, interactions), then the amplitude of this event is the product of the 
amplitudes of all the steps. 

(b) If an event may occur in several disjoint alternative ways, then its 
amplitude is the sum of the amplitudes of all the ways. 

Given a diagram K and a set of matrices .kt and ~ (see Fig. 13), one 
can compute the amplitude T(K) for this diagram. This amplitude decomposes 
as a sum of the amplitudes for configurations of the diagram. Each configura- 
tion is an assignment of spins to the nodes of the diagram. Given a configura- 
tion, each matrix has a well-defined value and the amplitude of this 
configuration is the product of these values. Thus, the vacuum-vacuum 
amplitude T(K), i.e., the amplitude for particles to be created from the vacuum, 
interact in the pattern of the link diagram K, and return to the vacuum, is 

.:. , '] 

Fig. 13. Matrix quantities associated with maxima, minima, and crossings. 
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the sum (over all the configurations) of the product of the matrix values for 
each configuration. 

For instance, the associated vacuum-vacuum amplitude of the link dia- 
gram presented in Fig. 14 is given by 

T( K) = ~ a b ~ c d f i  be~fi geh f i  fi)4,/lt~ gJ,/[l~ hi (4) 

In order for T(K) to be an invariant of regular isotopy, one needs the 
following restrictions on the matrices, corresponding to Figs. 15a-15d, 
respectively: 

t. ~t~i~t ib = 8 b (5a) 

2. O~q.bo~i j .  = a b v~,j v~ca ~c~d (5b) 

A,I O'l) ia AAjb 3. fic ~b = JVVci~,t,djaVt: (5C) 

4. fi hfi  , , = fi cfi  fi   (Sd) 

Whereas the meaning of the two first conditions is clear, it is interesting 
to try to give a consistent interpretation for the other two. 

The third condition relates f i  and fit-i via creations and annihilations. 
A possible physical meaning of this condition may be understood through 
the following example. In Fig. 16, we assume that the condition 1 holds and 
that parallel identity lines are interchangeable with pairs of creations and 
annihilations. Then, one obtains an equivalence of  spin and statistics (Sorkin, 
1988), where spin is associated to the twist of framing (curl of the diagram) 
and statistics corresponds to the braiding of the two lines (see Fig. 17). 

Condition 4 gives us simply the Yang-Baxter equation. Then, behind 
a knot diagrammatic structure there is a quantum Hopf algebra structure. 

Fig. 14. A link diagram K whose associated vacuum-vacuum amplitude T(K) is given 
by equation (4). 
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A 
I I  

. :  . : .~ J o J X  

c u 
Fig. 15. Diagrammatic restrictions ensuring regular isotopy invariance for the above T(K) 

(see Fig. 14). 

Fig. 16. Parallel lines are interchangeable with pairs of creations and annihilations. 

SPIN 

STATISTIC~ 

Fig. 17. Equivalence spin-statistics. 
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Furthermore, by simply adjusting the creation and annihilation matrices cor- 
rectly, one automatically produces a model of the bracket and a solution to 
the Yang-Baxter equation which will coincide with the fit-matrix correspond- 
ing to SLq(2). 

First, in order to model the bracket with a vacuum-vacuum amplitude, 
one needs to determine creation and annihilation matrices that are inverse to 
one another and that give a loop valued = -a  2 -~ . -2  [see equation (1)]. 

A possible solution to this problem is given by (Kauffman, 1988, 1990b) 

At = _ f-Z-L~_, = ~ fi (6) 

where the loop valued is correctly adjusted since it corresponds to the sum 
of the squares of the entries of At, and 

A t  z = 1, ,/lltab ~ b c  = ~ ,  ~t~b = JI/£ ab (7) 

Fixing the choice for the creations and annihilations, there is one choice 
for the fit-matrix to give the following bracket (see Fig. 18): 

,,~,,a (8) 

With this choice, T(K) will satisfy the defining equations of the bracket 
(see Fig. 8), and therefore 

(K) = T(K) (9) 

With the relation (7), which is not else than condition l [see equation 
(5a)], and considering fit to be defined by equations (5), then condition 2 
[see equation (5b)] follows immediately: 

fitfit = 1 (10) 

Condition 3 is also satisfied, as is shown in Fig. 19, while condition 4 
is proved by first checking (see Fig. 20) 

O'hab Aide A4adO'~be 
~caJm. = . . . . .  dc ( 1 l ) 

and then performing the following variation on the bracket derivation of the 
invariance under the type III move (see Fig. 21). 

Fig. 18. The bracket corresponding to formula I of Fig. 8 wi th f  =,~ - l  [see equations (I)]. 
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Then, we have shown that it is possible to produce a model of  the 
Kauffman bracket and to give a solution to the Yang-Baxter equation by an 
appropriate adjustment of  the matrices ~ of  creation and annihilation. 

In other respects, the matrix ~ [see equation (6)] satisfies 

lim ~ ----> xl = ( ,-~1 1)  (12) 

Let A E GL(2); then "q satisfies the well-known relation 

ARIA' = Det(A) Xl (13) 

If A E SL(2), then Det(A) = 1 and SL(2) can be considered as the set 
of matrices A leaving invariant the bilinear form "q: 

SL(2) = {AIA.qA' = "q} (14) 

At a ---) 1, the bracket does not discern between under and overcrossings, 
and the identity illustrated in Fig. 22 corresponds directly to the Fierz identity: 

a b rl~b'qcd = 6c~d - 8 ~  b ( 1 5 )  

Thus, at a ---> _.+ 1, these diagrams are interpreted as tensor diagrams for 
SL(2)-invariant quantities. 

It is then natural to think about a generalization of this symmetry for 
the topology of  link diagrams. That is, what is the quantum group associated 
to the bilinear form ~ (Dubois-Violette and Launer, 1990)? 

I tz=l 

J 
= ( >I ÷ < 

a= 1 I( > I (i=l 

I-, 

c d 

T/(d ; 

¢ d 

Fig. 22. Fierz identity. 

. , 3 ,  ~ b 
0 0 

a=l d c 
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Let us consider the set of matrices A: 

A(: :)  16, 
with associative and possibly noncommutative entries, and ask for the follow- 
ing invariances: 

A~qA' = f], A'~I A = ~1 (17) 

It is easy to see that these conditions are equivalent to the defining 
relations for the quantum group Aq = Funq(SL(2)): 

a 'b  = qb'a, a . c  = qc'a,  a . d  - d ' a  = (q - q- l )b 'c  

b ' c  = c.b,  b . d  = qd.b, c ' d  = qd.c  (18) 

with 

q = ~ (19) 

The coproduct of this quantum Hopf algebra is given by 

A: aq -9 Aq @ Aq/A(A j )  = X a~ ® A~ 
k 

The antipode y and the counit ~ are defined, respectively, by 

d 
y(A) = _q_lc 

{ y(A,)Aj = 8~i b ~ i k i 

i k i AKy(A} ) = ~) 
k 

(20) 

(21) 

~(Aj) = 8} (22) 

3. QUANTUM WEYL-SCHWINGER-HEISENBERG GROUP 

First, let us comment on duality. For a classical compact group G, the 
algebra A1 = Fun(G) of representative functions on G carries a Hopf algebra 
structure. The correspondence between G and At is given by Tannaka's duality 
theorem (see, for instance, Abe, 1980). Indeed, the group structure on G 
gives rise to a Hopf algebra structure on At: Multiplication in G defines a 
coproduct A: Ai -9 At ® At, evaluation at the identity element defines a 
counit ~: Ai -9 C, and the inversion map g -9 g-i in G defines an antipode 
y: At -9 At. 
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If G is locally compact, commutative, and compact (or discrete), then 
its dual space G is locally compact, commutative, and compact (or discrete). 
This is the so-called Pontryagin duality (Woronowicz, 1980). For instance, 
the Fourier-dual spaces of the group R of real numbers is itself, of the circle 
S ~ is the group Z (and vice versa), and of the cyclic group ZN is itself. 

In other respects, the quantum group Aq = Funq(G) is a noncommutative 
and noncocommutative Hopf algebra depending on a complex parameter 
such that Funt(G) = Fun(G). Its dual space is no longer a group, but a 
category (Majid, 1990b), that of finite-dimensional unitary representations 
of the considered quantum group. This is the so-called Tannaka-Krein duality 
(Majid, 1990c). 

Furthermore, the commutative group has a property which does not 
generalize in the noncommutative case. That is, the unitary irreducible repre- 
sentations are 1-dimensional and the tensor product of two such representa- 
tions is another 1-dimensional one. Each such representation may be 
considered simply as a complex function f: G ~ C with f (g l 'g2)  = 
f (gO' f (g2)  for any gl, g2 ~ G. The tensor product is then reduced to the 
simple pointwise product of functions and the set of inequivalent unitary 
irreducible representations is then itself a group. This is the Pontryagin 
duality. In the quantum case this property is not fulfilled and one ends up 
with the Tannaka-Krein duality between quantum groups and categories. 

Finally, one can associate with a classical group G another classical 
Hopf algebra, namely the universal enveloping algebra °R(~3) of the Lie 
algebra ~3 of G. This Hopf algebra admits a one-parameter deformation °Rq(~3) 
(Kirillov and Reshetikhin, 1988), and it is well known that there is some 
duality between Funq(G) and ~q(~3) (Rosso, 1987; Meister and Wong, 1991). 

From this discussion, we can emphasize the interesting duality property 
of the cyclic group ZN, that is, it is dual to itself. 

However, we know that the Heisenberg group is non-Abelian. 
Making use of the Weyl-Wigner-Moyal formalism in the context of 

the discrete Weyl-Schwinger realization of the Heisenberg group with the 
prescription that noncommutativity is absorbed in the coefficients a m of an 
operator A belonging to the group algebra and written in the Schwinger basis 
{~/m} (Djemai, 1995, 1996) 

1 A = ~ ~ am~. (23) 

then one may pass from the algebra of functions on ZN ® ZN with a twisted 
product *v to the algebra of functions on ZN ® ZN with the (operator) product 
o. This allows us to use the (Fourier)-Pontryagin duality instead of the 
Tannaka-Krein one, since the dual space of the commutative group ZN ® 
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ZN is itself. This trick can be used to avoid the explicit use of Hopf algebras 
(Atdrovandi, 1993). 

In Djemai (1995) we presented a new nontrivial solution fit to the 
Yang-Baxter  equation. For arbitrary N, it is given by the following (N 2 - 
1) 2 X ( N  2 - 1)  2 matrix: 

~a~r t  = Oa+bRm+n'tu(a×b+m×")/2 (24) 

with to = exp(i2';r/N). 

/o 
0 
0 

~ =  1 
0 
0 
0 
1 

For instance, for N = 2 we get (Djemai, 1995) 

0 0 0 1 0 0 0 1~ 
to 0 1 0 0 0 0 0 
0 to 0 0 0 1 0 0 
1 0 oJ -~ 0 0 0 0 0 
0 0 0 l 0 0 0 l 
0 0 0 0 to 0 l 0 
0 1 0 0 0 to-I 0 0 
0 0 0 0 1 0 to-t 0 
0 0 0 I 0 0 0 1 

(25) 

In general, the RTF equations (Faddeev et al., 1989) 

~TIT2 = T 2 T ~ ,  Tj = B ® 1, T2 = 1 Q B (26) 

will permit us to determine the defining commutation relations of the quantum 
group associated with this R-matrix.  The most general one is obtained by 
taking the matrix B in equation (26) to be a general (N 2 - 1) x (N 2 - 
l)-matrix: 

B = (Bij), i , j  = l, 2 . . . . .  N 2 - 1 (27) 

The simplicity of  the case N = 2 produces, as expected, trivial results 
due to the fact that to = - 1 .  It is easy to see that all the matrix elements 
are central and obey the following relations: 

B11BI2 + B21822 + B31B32 = 0 (28a) 

BllBl3 + B2t823 + B31B33 = 0 (28b) 

811821 + 812B22 + BI3823 = 0 (28c) 

BIIB31 + B12B32 + B13B33 = 0 (28d) 

BI2B13 + B22B23 + B32B33 = 0 (28e) 

B21 B31 + B22B32 + B23B33 = 0 (28f) 

and 

( B I I )  2 - (B22)  2 = ( 8 2 3 )  2 - ( 8 3 1 )  2 = (B32)  2 - (B13)  2 (29a) 

( 8 2 2 )  2 - -  ( 8 3 3 )  2 = ( 8 1 3 )  2 - -  (B21)  2 = (B31)  2 - -  ( 8 1 2 )  2 (29b) 
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Hence, it is more interesting to investigate the case N --> 3, where the 
deformation parameter to is a root of unity different from - 1. Moreover, the 
obtained Hopf algebra in this case is defined by the following operations: 

A: A --> A ® A/A(Bi j )  = ~ Bik ~ Bkj (30a) 
k 

~: A --> A/~(Bi j )  = (B-t)ij (30b) 

e: A --> C/e(Bij)  = ~ij (30c) 

However, different quotients of the resulting quantum group can be 
considered by imposing additional (consistent) relations on the generators 
Bij. For instance, one can choose B to be an upper- t r iangular  matrix: 

Bij = 0 for i < j  (31) 

The case N --> 3 will be treated in a future paper. 
We end this section by presenting another way of looking at the situation 

N = 2. In general, it is well known that an ordinary Lie group can be locally 
obtained from the Lie algebra by exponentiation and that the infinitesimal 
generators of the Lie group can be identified with the Lie algebra. For 
quantum groups and quantum algebras, both of these relations are replaced 
by duality of Hopf algebras. However, it was shown in Vokos et al. (1990) 

and Corrigan et al. (1990) that the elements of a 2 × 2 SUq(2) matrix 
which is infinitesimally near the identity element satisfy simple commutation 
relations and when exponentiated give an element of SUq(2). Thus, consider 
an element of SUq(2): 

where the entries a, b, c, and d satisfy the relations 

a ' b  = q b . a ,  a . c  = q c . a ,  a . d  - d . a  = (q - q - I ) b . c  

b ' c  = c ' b ,  b . d  = q d ' b ,  c . d  = q d . c  (33a) 
and 

a ' d  - q b ' c  = d ' a  - q - l b ' c  = 1 (33b) 

a* = d, b* = - q c ,  c* = - q - l b ,  q ~ R (33c) 

Then, one can write 

1 
U = co A = ~] ~ [Ln(to)]nA n ~_ 1 + Ln(to) A (34) 

n=0 
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where A is given by equation (23). This expansion was used in Arik and 
Saraco~lu (1994) to show that the components of  the eigenvectors of  an 
SLq(2) matrix are given by Bessel functions. 

Furthermore, one can see the case N = 2 treated in Djemai (1995) within 
this scheme. It results that the conditions (33c) are naturally fulfilled by 
construction [see equation (34)], with 

q ---- oJ = e i~r = - 1  e R]q 2 = I (4: - 1 )  (35) 

In this case, the relations (33a) and (33b) become 

{a,b} = {a,c} = {b,d} = {c,d} = 0  

[a, d] = [b, c] = O, a d  + b c  = 1 (36) 

Then, from equation (34) one has the following commutation relations: 

{al, a3} = {a2, a3} = 0, [at, a~] = 0, a z + a 2 = a~ (37) 

4. KNOT F O R M A L I S M  AT W O R K  

In Section 2 we saw how knot theory leads naturally via the Kauffman 
bracket to the notion of quantum groups. The purpose of this section is to show 
how a Hopf algebra structure can give rise through its matrix representation to 
invariants of links, making use of the formalism behind the quantum double 
construction of Drinfeld (1986) (see also Majid, 1990d). 

Let H be a Hopf algebra with basis {e  i, i = 0 . . . . .  n} and let H* be 
a Hopf algebra, dual to H, with generators { d ,  j = 0 . . . . .  n }. 

Our quantum double D(H) built on H* ® H is defined such that the 
Hopf algebras H and H* are respectively equipped with the following multipli- 
cation laws: 

m ( e i  Q e j )  = e i ' e j  = A ~ e k  

m * ( e  i ~ e j )  = e i . e j = B~e  k 

(38a) 

(38b) 

such that 

A s'Rbq = ~inh~ q (39) n j ~ s  

and where the coproduct A for H is the opposite of the multiplication m* 
for H* and the coproduct A* for H* is the opposite of the multiplication rn 
for H, i.e., 
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A(e,) = B~ei ® ej ¢~  ei ® ey = A~)A(e,) (40a) 

A*(e k) = A ~ e  i ® e j ¢=~ e i ® e j = B~A*(e k) (40b) 

The co-units e for H and e* for H* are defined by 

{~ if k = 0  (41a) 
e(ek) = otherwise 

e.(ek) = [1  if k = O  (41b) i0 otherwise 

Finally, the antipodes 3' for H and 3'* for H* are defined by 

3"(ek) ~ e-k ------ e k (42a) 

3'*(e k) ----- e -k -- ek (42b) 

such that 

el" e j = e J ' e i  = ~ 1 (43) 

The multiplication and the coproduct on our quantum double D(H) are 
defined respectively by the following relations: 

Ix: D(H) [ ]  D(H) --> D(H) 

Ix[(e m Q e.) [ ]  (e i ~ ej)] -- [e ~ Q e . ] - [e  i Q ej] = mis r +.jr[e ® e d 
(44a) 

and 

/~: D(H) --) D(H) [ ]  D(H) 

A ( e  i ® ej) = ~}~'r(e m ® en) [ ]  (e r ® e~) (44b) 

Its dual D(H)* is also equipped with the following multiplication and 
coproduct laws: 

IX*: D(H)* [ ]  D(H)* --~ D(H)* 

Ix*[ (e  m ~ e') [ ]  (ei Q eJ)] = [era ® e']" [ei ® e j] = -rmist~rlltnjr[p (~ eS] 
(45a) 

and 

/~*: D(H)* ---) D(H)* [ ]  D(H)* 

A*(e i  @ e J) = ~b~:'~"r(e,. ® e") [ ]  (er @ e "~) (45b) 
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with 

The quantities + and ~ are tied to A and B by the following relations: 

f~mnjr~ mi s _.~ mis = B~ Anj l~lnjr (46a) 

f • m i s d l b q r  ~m~i ~b~q 
njr  "t" aps  ~ ~ a  v p ~ n ' - ' J  

The antipode F on D(H) may be defined as follows: 

[F(e i Q ej)]" [e i Q ej] = 

(46b) 

['Y*(e j) ® ~/(el)]" [e i ~ ej] 

= [',/*(eJ) • ei] (~ [~/(ei). ej] 

= m*[~/*(e j) ® e i] <~ m['~l(ei) ~) ey] 

= m * [ ~ *  ® Id](e j Q e i) ~ m['y ® Id](ei Q ej) 

= m*[~t* ® Id]A*(e k) ® m[~/® Id]A(ek) 

= ¢*(e k) ® ¢(ek) 

= 1 ® 1 (47) 

where we have made use of the general definition of an antipode and the 
relations (39), (40a), (40b), (41a), and (41b). 

The relation (47) means that the inverse of any element e i ~ ej of D(H) 
is given by ~/*(e j) ® ~/(ei). Similarly, the antipode F* for the dual quantum 
double D(H)* is defined such that the inverse of (ei ® e j) is ~(ej) ® ~l*(ei). 

In order to render this formalism more clear, we introduce the following 
diagrammatic notation (see Fig. 23), where we assume that the symbols 
corresponding to the coefficients A~ and B~ commute with the e-nodes and 

T,, i~l n n )  t ( i  ~'j 

k 

A # - -  ----~ ; 4 
t i b:  

. I I 

Fig. 23. Diagrammatic representations o f  the generators e ~, era, e"  @ e., e., ® e". and the 
coefficients A,~ and B~/. 
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t l ~- i 

Fig. 24. Diagrammatic representations of the multiplication laws m and m* [see equations 
(38a) and (38b)]. 

that we are summing on repeated indices (lined up). For instance, Figs. 24a, b, 
25a,b, and 26 give, respectively, the diagrammatic representations of the 
relations (38a), (38b); (42a), (42b); and (47). The presence of indices in the 
diagrams means simply that we are in some matrix representation. 

Moreover, we also assume the following relations to be fulfilled: 

eiB~A7 m. e m = ~,nan o # .  : tmjUk ~i 

g (48) 

B~A']mei" e m = a ~ j B ~ ' e " ,  ei 

(era ® " ~ "  .l.mas.lobqi[ p W/Tajtt~bnr[C=m ® e") c: WnbrVapj~e ~ eq) = (e  p @ eq)" ,I,qbi,Kam, w ,  

(49) 
~ b m a s ,  l , b q i  [ ~ • I , q b i , . k a m s £  ~ p nbrWa#j~Cm ~ en) • (e p ~ eq) = V?#ajWbnr~e ~ eq)" (em ~ e n) 

,~ H -~ H ; ~.': ~ H 

& Ill 

Fig. 25. Diagrammatic representations of antipodes "y and ~'* [see equations (42a), (42b)]. 

V : DCH) -- ~ L'~N) 

Fig. 26. Diagrammatic representation of the antipode F of the quantum double D(H). 
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rl 

|. 

© 
v, 

, ~ w ,  I I t 

Fig. 27. Diagrammatic representation of the relation (48). 

For instance, the relation (48) may be represented by the diagram of 
Fig. 27. 

Let ~t E D(H) [ ]  D(H) be the element (see Fig. 28) 

= ~ (e m@en) [] (em @ e  n) (50) 
rn,n 

with the following identities ~ (D(H) [ ]  D(H) [ ]  D(H): 

~t12 = ~ (e" ® e,) [ ]  (era ® e n) [] (1 ® 1) (51a) 
r?l~?l 

~,3 = ~ (  e ~ ® e b ) [ ] ( l ® l ) [ ] ( e . ® e  b) (51b) 
a,b 

~23 = ~ ( l  ~ 1) [ ]  (eP ® eq) []  (ep ® e q) (51c) 
p,q 

Then, using the relations (44a), (45a), and (49), we can easily prove 
that this element obeys the following quantum Yang-Baxter equation: 

~12~/~13~'~23 = ~t,23~'~13~12 (52) 

Then, ~t denotes an algebraic solution to the Yang-Baxter equation, 
which can be interpreted as the knot-theoretic ~t-matrix in some representation 
(see Section 2). 

As we know from Section 2, to ensure the existence of a link invariant 
the knot theory requires some relations between ~t, ~t-~ and the creation 
and annihilation matrices [see equations (5a)-(5d)]. 

Since any quantum double is quasitriangular, then ~-1  is defined by 
the relation 

(F ® Id)(~t) = ~-~  (53) 

,=d 

¢,t 

c 
Fig. 28. Diagrammatic re 

,: d 
cesentation of the R-matrix. 
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( ~ - t  3 ab 
cd 

a, b 

c d c d 
Fig. 29. Diagrammatic representation of ~ - J .  

It is represented by the diagram of Fig. 29. 
It follows that the relations (5a)-(5d) are diagrammatically represented 

by the same diagrams as in Figs. 15a-15d, where the creation and annihilation 
matrices are given by the same diagrams as in Fig. 13. For instance, the 
relation (5c) may be reproduced as shown in Fig. 30. 

Finally, we remark that our twist conditions required by knot theory 
are intimately tied to the quantum double Hopf algebra structure for the 
quantum group. 

This quantum double construction can be applied for the case of our 
Hopf algebra H equipped with a basis consisting of Schwinger matrices. The 
roles of the above basis {ei} and {e i} are then played respectively by {~/m} 
and {.ym}, and one can follow the same procedure as above. 

Now we show how all this formalism can be seen from a quantum 
mechanical point of view. We will use the same notations as in Djemai (1996). 

First, consider the case of a quantum particle moving in a two-dimen- 
sional phase space. The operator "y(a, b), which gives rise to the translations 

q--.-> q + a, p-.--> p + b (54) 

can be obtained by the following correspondence: 

"~ntrl • °.)mnl2um" v n  -'-> T(a, b) = e i (ap -bq)  (55)  

cd 

c 

Fig. 30. Diagrammatic representation of the relation (5c). 
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where a and b are real parameters characterizing the translations along the 
position and momentum directions, respectively, and where the Hermitian 
operators q and p generate (with 1) the fundamental Heisenberg algebra: 

[q, p] = i h l  (56) 

The algebra H generated by 3'(a, b) is of "Hopf" type. It is equipped 
with a "multiplication" m, a "coproduct" A, a "co-unit" e, and an "antipode" 
Y defined, respectively, by 

m['y (a ,  b )  ® ~t(c, d)] = ~ ( a ,  b ) . ' y ( c ,  d )  

= e-i~'z~(a'b);(c'd~(a + c -- r )~ (b  + d - s)~t(r, s )  (57) 

A[3~(r, s)] = ei~21("'b):(c'd)l~(a + C -- r )~ (b  + d - s ) ~ ( a ,  b )  

® ~(c, d) (58) 

(10 if a = b = O  
e['y(a, b)] = otherwise (59) 

Y[~/(a, b)] = ~/(-a, - b )  (60) 

Similarly, the "Hopf '  algebra H* "dual" to H is generated by the elements 
~/+(a, b) which are obtained from the following correspondence: 

~mn + = "t,.n = ~t- . , . -~  ~ "y+(a, b )  = e - i ( a p - b q )  (61) 

H* is endowed with a "multiplication" m*, a "coproduct" A* a "co- 
unit" E*, and an "antipode" Y* defined, respectively, by 

rn*[~/+(a, b) ® ~+(c, d)] = ~/+(a. b)-'/+(c, d) 

= e-i'~2t(a'b):(c'a)l~(a + c - r )~(b + d - S)~l+(r. s) (62) 

A*[~/+(r, s)] = ei~2t(a'b);(c'd)l~(a + C -- r )~(b  + d - s)~/+(a, b) 

® ",/+(c, d) (63) 

{~ if a = b = 0  
~*[3,+(a, b)] = otherwise (64) 

Y*[~/*(a, b)] = ~+(-a, -b )  (65) 

The "Hopf" algebra H* can be considered as describing the evolution of the 
ant i -par tner  of the above quantum particle in the phase space. This interpretation 
follows from the fact that 

",/+(a, b) = ~/(-a, - b )  (66) 

which physically means that the antiparticle translates in the o p p o s i t e  direction 
of that of the associated particle. 
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In the above relations, the tensor product ® may be interpreted as being 
the association of two particles (or two antiparticles). 

Furthermore, it is straightforward to think of the physical situation 
described by the quantum double structure D(H) as nothing else than the 
evolution of a particle-antiparticle pair in the quantum phase space. Con- 
cretely, the dual D(H)* will describe the same physical situation. 

The "Hopf" algebra D(H) whose elements are of the form 2J÷(a, b) ® 
y(c, d) is equipped with a "multiplication" Ix, a "coproduct" /~, a "co-unit" 
~, and an antipode F defined, respectively, by 

tx{[y+(a, b) ® y(c, d)] [ ]  h,+(a ', b') ® y(c', d')]} 

= [y+(a, b) ® y(c, d)]" [y+(a', b') ® y(c', d')] 

= e - ia2 l (a 'b ) : (a"b ' ) ]e - ia z [ (c 'd ) ; ( c"d ' ) lS (a  + a' - e)8(b + b' - f )  

× 8(c + c' - g)8(d + d' - h)y+(e,f) ® y(g, h) (67) 

A[~/*(e, f )  ® y(g, h)] 

: eia2[(a,b);(a',b')leia2l(c,d);(c',d')) 

X ~(a + a' - e)B(b + b' - f ) 3 ( c  + c' - g)~(d + d' - h) (68) 

× [y+(a, b) ® y(c, d)] [ ]  [y+(a', b') ® y(c',  d')] 

{ [ y + ( a , b ) ® y ( c , d ) ] = { l o @ l  if a = b = c = d = O  
otherwise (69) 

F[y+(a, b) @ y(c, d)] = Y*[y+(a, b)] @ Y[y(c, d)] 

= y+(-a, -b )  ® "y(-c, - d )  (70) 

Finally, we conclude by remarking that the ~t-matrix e D(H) [ ]  D(H) 
may be interpreted as describing an interaction between two pairs of particle- 
antiparticle, in analogy with the usual Feynman diagrams (Feynman, 1964). 

5. CONCLUSION 

In previous work (Djemai, 1996) we described quantum mechanics 
as a noncommutative symplectic geometry using the Weyl-Wigner-Moyal 
quantization technique, the Weyl-Schwinger realization of the Heisenberg 
group, and the matrix differential geometry associated with the matrix algebra 
M~C) generated by Schwinger matrices. 

The matrix (quantum) Hamiltonian formalism developed in Djemai 
(1996) was used in Djemai (1995) to show the presence of a braiding and 
then of a Yang-Baxter algebra structure behind our lattice quantum phase 
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space. In fact, from this braiding we obtained a nontrivial Q-matrix solution 
for arbitrary N. Moreover, a second nontrivial Q-matrix solution was pre- 
sented following the method used in Dubois-Violette and Launer (1990). We 
also discussed in Djemai (1995) the construction of the quantum group 
associated with the first ~t-matrix solution for the case N = 2. 

In the present work, we have completed the latter discussion and showed 
that the case N = 2 is somewhat trivial; it would be more interesting to 
investigate the cases N >- 3. In addition to the case N = 3, we plan to study 
the construction of the quantum group associated with the second Q-matrix 
in a future work. The discussion of the case N = 2 was continued by deriving 
the commutation relations following from the identification of infinitesimal 
generators of the SUq(2) with our quantum (operator) algebra following the 
arguments presented in Vokos et aL (1990), Corrigan et al. (1990), and Arik 
and Saraco~lu (1994). 

The second main purpose of this work was to show how to go from a 
knot theory to a quantum group structure and back. For this purpose, we 
used the Drinfeld's (1986) quantum double, which is one of the most important 
quantum group constructions and plays an important role in physics (Podles 
and Woronowicz, 1990; Brzezinski and Majid, 1993; Majid, 1992). The 
quantum double constructed here is based on our Hopf algebra generated by 
Schwinger matrices. 

In order to show that this quantum double construction leads naturally 
to knot theory, it has been necessary to introduce a new diagrammatic notation. 
Our approach appears to be more general than the one proposed by Kauffman 
(1990a). Nevertheless, we think that this question still requires further 
investigation. 

In other respects, our approach also enables us to give a physical interpre- 
tation of this quantum double by describing the matrix quantum mechanics 
of a particle-antiparticle system moving in our lattice quantum phase space. 
The continuous version was also studied. 

Finally, we plan to complete this work by presenting other descriptions 
of quantum mechanics, its q-deformation, its Lagrangian and Newtonian 
formulations and related subjects. 
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